Orthogonal symmetric matrices and joins of graphs

نویسندگان

چکیده

We introduce a notion of compatibility for multiplicity matrices. This gives rise to necessary condition the join two (possibly disconnected) graphs G and H be pattern an orthogonal symmetric matrix, or equivalently, minimum number distinct eigenvalues q G∨H equal two. Under additional hypotheses, we show that this is also sufficient. As application, prove q(G∨H) either three when are unions complete graphs, characterise each case occurs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponentials of skew-symmetric matrices and logarithms of orthogonal matrices

The authors show that there is a generalization of Rodrigues’ formula for computing the exponential map exp: so(n)→SO(n) from skewsymmetric matrices to orthogonal matrices when n ≥ 4, and give a method for computing some determination of the (multivalued) function log: SO(n) → so(n). The key idea is the decomposition of a skew-symmetric n×n matrix B in terms of (unique) skew-symmetric matrices ...

متن کامل

Minimization Problem for Symmetric Orthogonal Anti - Symmetric Matrices

By applying the generalized singular value decomposition and the canonical correlation decomposition simultaneously, we derive an analytical expression of the optimal approximate solution b X, which is both a least-squares symmetric orthogonal anti-symmetric solution of the matrix equation A XA = B and a best approximation to a given matrix X∗. Moreover, a numerical algorithm for finding this o...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices

In this paper we present an O(nk) procedure, Algorithm MR3, for computing k eigenvectors of an n× n symmetric tridiagonal matrix T . A salient feature of the algorithm is that a number of different LDLt products (L unit lower triangular, D diagonal) are computed. In exact arithmetic each LDLt is a factorization of a translate of T . We call the various LDLt products representations (of T ) and,...

متن کامل

Cospectral Graphs and Regular Orthogonal Matrices of Level 2

For a graph Γ with adjacency matrix A, we consider a switching operation that takes Γ into a graph Γ′ with adjacency matrix A′, defined by A′ = Q > AQ, where Q is a regular orthogonal matrix of level 2 (that is, Q > Q = I, Q1 = 1, 2Q is integral, and Q is not a permutation matrix). If such an operation exists, and Γ is nonisomorphic with Γ′, then we say that Γ′ is semi-isomorphic with Γ. Semiis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2022

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2022.07.007